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Abstract  

The straightforward expansion of the electric conductivity cr for an electron-impurity 
system in powers of the impurity density n~ is known to diverge term by term. It is shown 
that this difficulty which arises from the average potential field of impurities, can be 
removed by using the expansion in terms of proper connected diagrams. This expansion, 
however, leads to a complicated dependence of ~r on n~. The analytical behavior of 
c~(n~) in the neighborhood of ns = 0 is investigated qualitatively with the assumption that 
the interaction potential between electron and impurity is arbitrarily strong but has a 
finite range. It is found that this investigation does not support the argument recently 
advanced by several authors that o(n~) should contain in its asymptotic expansion terms 
in the combination of n~ and lnn~. The present theory starts with Kubo's current correla- 
tion function formula for ~ and proceeds with the aid of connected diagrams. It is devel- 
oped for a quantum system but also applies for a classical system with few modifications 
in definitions. 

1. Introduction 

A system of  non- interact ing electrons in the potent ia l  field of  impuri t ies ,  
character ized by  (2.1), could  be thought  as a crude app rox ima t ion  to  such 
a system as the system of  conduc t ion  electrons in a semi-metal  at  tempera-  
tures so low that  the in terac t ion  between electrons and  phonons  may  be 
neglected. True,  this model  system is far  f rom any real  system. But, since 
it is one o f  the simplest  systems which exhibit  the a p p r o a c h  to equi l ibr ium, 
it has been used as a test ing system when new non-equi l ibr ium theories were 
developed by m a n y  authors ,  including Van Hove (1955, 1957) and K o h n  
& Lut t inger  (1957). 

When  the convergence o f  the densi ty expans ion  of  the t r anspor t  coefficient 
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for a more complicated imperfect gas was questioned (Kawasaki & Oppen- 
heim, 1965; Weinstock, 1965; Kritz & Sandri, 1966; Sengers, 1966; 
Goldman & Frieman, 1967), the investigations of the same question for 
the simpler electron-impurity system were then undertaken by several 
authors with several methods of computation (Fixman, 1963; Van Leeuwen 
& Weijland, 1965; Weinstock, 1965; Kritz & Sandri, 1966; Langer & Neal, 
1966; Sengers, 1966; Dorfman & Cohen, 1967; Goldman & Frieman, 1967). 
Although it is concluded by all that the straightforward expansion in powers 
of the impurity density ns for the electrical conductivity ~ has the difficulty 
of term-by-term divergence, the results and the proposed forms of non- 
power density expansion after the resummation of 'most divergent parts' 
are not unique. Some authors claimed to have found terms in the combina- 
tion of ns and lnn~ (Fixman, 1963; Van Leeuwen & Weijland, 1965; Langer 
& Neal, 1966; Murase, 1966) while others did not (Fujita, 1967a). In order 
to settle this controversy, we have investigated the question in further detail 
than hitherto attempted. It will be demonstrated in the present paper that 
the resummed series is unlikely to contain any logarithmic terms for small 
values of n~ irrespective of whether the system is quantum-mechanical or 
classical, and irrespective of whether the impurity potential is weak or 
strong. This result is in agreement with that of the earlier investigation by 
one of the present authors (S.F.) for the quantum-mechanical, weakly 
coupled system (Fujita, 1967a). 

In deriving this conclusion we use Kubo's current correlation function 
formula (Kubo, 1957) t o r e  as the starting point, and the connected- 
diagram expansion as the analyzing tool. This expansion technique 
(Fujita, 1967a), developed earlier by one of the present authors (S.F.), 
enables one to formally expand e in powers of n~, the resulting expansion 
being found term-by-term divergent as mentioned earlier. 

The cause of this divergence may be attributed to the effect of the average 
field of impurities. Since we calculate the current correlation function using 
the canonical distribution for the electrons and the appropriate distribution 
for the impurities, any collision process between an electron and a set of 
impurities should take place in the average field of other impurities. The 
effect of such a field, irrespective of whether the system is classical or 
quantum mechanical, will be to induce perturbed single-particle energies 
and less restricted energy conservation (collision broadening). These points 
will be borne out explicitly in our calculation. It is noted that the present 
interpretation of the cause of the divergence is different from that which is 
associated with the so-called recollision process and imaginary collision 
(Dorfman & Cohen, 1967). 

The term-by-term divergence in the impurity density expansion can be 
eliminated by the summation of 'most divergent' parts. This was first 
explicitly demonstrated by Kawasaki & Oppenheim (1965) with the aid of 
Zwanzig's method of expansion (Zwanzig, 1963) for the case of a classical 
imperfect gas. The elimination of the divergence can be performed in a 
similar manner for the electron-impurity system. When different com- 
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putational methods are used, the elimination proceeds in different ways. 
The results after the summation of most divergent parts were shown to be 
the modification in the energy denominator as seen in, for example, (3.12) 
of the paper by Kawasaki & Oppenheim (1965) (for the imperfect gas), 
(4.23) in the paper by Murase (1966) and (3.32) in the work by Fujita (1967a) 
(the last two for the electron-impurity system). 

The discrepancies in the proposed form of the non-power density 
expansion i.e. the existence or non-existence of terms in the combination 
of ns and Inns, arise in essence only when the effect of this modification of 
the denominator on a is estimated. A number of authors concluded the 
existence of the logarithmic terms by considering the case of a strong, short- 
range potential, such as a hard-core potential, and estimating the resulting 
integral in a qualitative manner (Fixman, 1963; Kawasaki & Oppenheim, 
1965; Van Leeuwen & Weijland, 1965; Kritz & Sandri, 1966; Langer & 
Neal, 1966; Murase, 1966; Sengers, 1966; Dorfman & Cohen, -1967; 
Goldman & Frieman, 1967). We believe that their estimations of the 
integral are in error. Since the work by Murase (1966) deals with the same 
system and proceeds in the almost same manner as the present paper, we 
discuss the source of the error in this work in detail. 

In Section 2, we summarize the method of connected diagrams for the 
calculation of the current correlation function formula for a. This a is 
expressed in terms of the solution of the transport equation (2.6) (Kohn & 
Luttinger, 1957; Luttinger & Kohn, 1958). The collision operator gz and 
initial correlation operator ( f zn ' )  (c) appearing in this equation are analyzed 
in Section 3 in terms of proper and improper diagrams. The results (3.2)- 
(3.4) are, more general than, and closely related to, the damping-theoretical 
expansion of the resolvent operator [h0 + v - z] -1 by Van Hove (1955, 1957) 
and others (Janner, 1962; Swenson, 1962; Mori, 1965). When these 
expressions (3.2)-(3.4) in place of the defining expressions of gz and 
( f zn ' )  (c) in (2.7) were used to calculate ~, the difficulty of the term-by-term 
divergence of the impurity-density expansion mentioned earlier does not 
arise any more. 

In Section 4 the weak-coupling and low-density approximations to 
(3.2)-(3.4) for gz and ( f~n')  (~ are described. Using the low-density limit 
approximation, we calculate in Section 5 the conductivity explicitly, the 
result being identical with that one would obtain from the Boltzmann-Bloch 
equation for the short-range strong interaction. 

In Section 6 we investigate the behavior of a in the neighborhood of 
n~ = 0 for the case of weak coupling. In particular we examine the possibility 
of the (non) existence of logarithmic terms in its impurity density expansion. 
The same question for the strong coupling is discussed in Section 7, with 
remarks on the work by Murase. 

The collision operator gz becomes diagonal in k in the P - k representa- 
tion when the impurity distribution is assumed tO be invariant under 
translation. This is proved in the Appendix. 

Throughout the text the units are chosen such that h = t. 
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2. Method  o f  Connected Diagram Analysis t 

Let us consider an electron-impurity system characterized by the time- 
independent Hamiltonian 

H-= ~ h (~) 
J 

- Z h'd' + a s ~o-) (2.1) 

J J ,~  

where h(0 ~) stands for the kinetic energy of the j t h  electron, which may 
contain the energy due to a constant magnetic field; ~ )  = ~(r  O) - R~)  for 
the potential energy due to the impurity c~ at R~; ), is the coupling constant. 

When the Hamiltonian is composed of single-particle energies as in 
(2.1), Kubo's formula (Kubo, 1957) for the electrical conductivity can be 
expressed in terms of a single-particle trace, denoted by tr, as 

~r,,(oJ) = ; dt exp (-icot) lim~Q- flu, tr {j, exp ( - i th)  n' exp (ith)} (2.2) 
0 

n ' -  [exp{f3(h - j . u  - ~)} + 1]-' (2.3) 

where j ,  is the r-component of the velocity operator multiplied by the 
electronic charge -e ,  and u is a e-number vector; the us-derivative is to be 
evaluated at u = 0, and this convention will be used throughout the text. 
The identity between (2.2) and the standard formula in terms of current 
correlation function appearing in the work by Kubo (1957) can be estab- 
lished by simply performing the u-integration. 

According to the connected diagram analysis (Fujita, 1967a) the con- 
ductivity ~,~(co) can be calculated alternatively by 

~r,~(oo) = - i  lim tr {L ~b,(-co + ia)} (2.4) 
a->0 

One' 7 
| - -  (2.5)  ~s(z) = Ous = i ~ dt exp (izt).  On' 

OUs 
0 

where the operator ~ - (~x, ~y, ~=) is found to satisfy the transport equation 

On'(~) / an'\(~) 
( z -  ~0)tJ?(z) + ~ + I f = N )  = - g z ~ ( z )  (2.6) 

& - [-)tv + ~2 vR~O) v - A 3 vR  v~ ~ . R~ ~ v + . . . i f )  

f~ - -2tvR= (2.7) 
Rz - [~ - z] -1 = Ri o) - AR~ ~ vR~ ~ + " "  

R~ ~ - [/;o - z]  -1 

See Fuji ta ,  S. (1967a). Journal of Physics and Chemistry of Solids, 28, 615. 
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In these expressions, the Liouville operators/~,/~0, and v, which are denoted 
by script letters, are defined such that 

An' = [h, n'] = hn' - n' h (2.8) 

and the superscript (c) means the restriction that the product should contain 
no free line segments in the diagram language, e.g. 

= n s f d 3 _R~ ~ R~z O) vc~ (vRp v)(c) 

+ f f d3 R d3 (2.9) 

where x 2 ( R ~  --  R/~) is the two-impurity correlation function. 

3. Analysis o f  Collision Operator gz and Initial Correlations Operator 
(f~n'){ c~ 

A connected diagram for gz consists of potential, and correlation, bonds 
and non-free particle lines. A particle line is sam to be free or non-free 
according to whether or not the diagram is broken by cutting it. Typical 
diagrams are shown in Fig. 1. 
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Figure 1.--Examples of connected diagrams for gz. The improper diagram (b) which 
contain two inner g-parts can be uniquely reduced to the proper diagram (a). The proper 
diagram (c) has crossed-over potential bonds. The diagram (d) which contains an impurity 

correlation bond, corresponds to the second term on the right-hand-side of (2.9). 

A diagram will be called an improper diagram if it is broken into two by 
simultaneously cutting two particle line segments. Otherwise, it will be 
called proper. For example, the diagram (a) in Fig. 1 is proper. The diagram 
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(b) is improper as it is broken into two by cutting either pair of line segments 
(a, b), (a, c), or (b, c). The part suspended by the pair (a, b) has the same 
characteristics of connectedness as the original g-part, and such a part will 
be called an inner g-part. An improper diagram can be reduced into a simpler 
one by suppressing an inner g-part with the two adjoining line segments on 
both sides and replacing a single line segment. When this process of reduc- 
tion is continued any improper diagram will be eventually reduced to a 
proper one. This reduction is unique. Thus the improper diagram (b) in 
Fig. 1 can be reduced uniquely to the proper diagram (a). Conversely 
improper diagrams can be generated from proper diagrams by decorating 
or dressing the particle-line segments with inner g-parts. 

Let us consider a proper diagram. Its contribution will be written as a 
component of 

[ - ) v  + h E vR~ ~ v - ,~3 vR~O) vR~O) v +...](c,p) (3.1) 

where the superscriptp denotes the restriction that only the proper diagrams 
should be retained. Consider now an improper diagram which upon 
reduction gives rise to the proper diagram. The former can be constructed 
from the latter by dressing particle-line segments. By construction the sets 
of impurities involved in the original and in the inner g-parts are distinct 
from each other. The structures of all conceivable diagrams for an inner 
g-part are easily seen to be identical with those for the whole set of original 
g-parts. In the thermodynamic limit the operator for the whole set of inner 
g-parts will be identified with the operator g~. 

These analyses lead us to write the total contribution to gz, which can 
now be obtained by considering all the proper diagrams and their associated 
improper diagrams, in the following form 

gz = [-,~v + 1~2 v d v  - -  1~ 3 v d v d v  +...](c,p) (3.2) 

d ~  [do - z - g:]-I (3.3) 

In a similar manner one can analyze the contribution to the operator 
(f :  n') (c) and obtain 

( f zn ' )  (~) = [-)tv dn'+/~2 v dv dn' - . .  "](r p) (3.4) 

This regrouping of diagrams is, more general than, and, closely related to, 
the damping theoretical expansion of the resolvent operator [ho + v - z] -1 
by Van Hove (1955) and others (Janner, 1962; Swenson, 1962; Mori, 1965) 
[see, for example, Van Hove (1955), equation (3.13)]. In our formulation 
the regrouping is independent of representation, while their theory 
intrinsically depends on the representation in which the unperturbed 
Hamiltonian h0 is diagonal. The present theory has definite advantages 
when a system of particles, whose density is not constant, or when a system 
of charged particles subjected to a constant magnetic field is considered. 
This point has been explicitly illustrated in our earlier papers (Chen& 
Fujita, 1967; Fujita, 1967a). In the case where a homogeneous (constant 
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particle-density) system subjected to no magnetic field is treated, our 
formulation can be shown to be identical with the expansion of Van Hove 
(1955) and others (Janner, 1962; Swenson, 1962; Mori, 1965). 

The formulation developed so far does not contain any approximations 
(except for those which can be justified in the thermodynamic limit). 

4. Weak-Coupling and Low-Density Approximations 

In this section we shall discuss simple situations for which the operators 
g~ and (f~n') ~) may be approximated to in terms of proper diagrams 
appropriately chosen. 

(a) Weak Coupling Approximation 

When the potential between electron and impurity is a small perturbation, 
we may describe the interaction process by choosing the simplest possible 
proper connected diagram shown in Fig. 2. 

/A,, X x 
/ x / \ 

/ X / �9 
/ X / k / \ / x 

/ \ / \ 

I \ / �9 x 
I \ g ,  N O 

(a) (b) 

Figure 2.--The proper diagrams (a) and (b) generate the weak-coupling approximations 
(b,B) to (g~,(f~n~)t~)), defined in (4.1)-(4.3). 

In this approximation the operators gz and (f~n') (c) will be determined 
by the following equations 

gz ~ b = [h z v db v] ~c'~) = A z ~ ~7~ db ~7~ (4.1) 

d~ - [~0 - z - b] -1 (4.2) 

(Ln ' )  ~) -+ B = -[hvdbn'] (c'p) = -)~ ~ ~d~n~' (4.3) 
o~ 

where n~' is the term of the first order in ~ in n'. 

(b) Low-density Approximation 

In the case in which electrons interact strongly with impurities one must 
consider contributions of arbitrarily high orders in h. When the density of 
the impurities is very low, the electron will be occasionally in interaction 
with one impurity at one time. 

As basic proper structures we shall choose only those diagrams for g~ 
and (f~n') ~) in which all the potential bonds terminate at the common 
impurity center, as shown in Fig. 3. 

5 
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Figure 3.--These proper diagrams generate the low-density approximations (c, C) to 
(g~, (f~n~)(~)), defined in (4.4)-(4.8). 

In this approximation the operator g~ and ( f zn ' )  (c) will be given by 

g~ ---> c --- ~ c~ (4 4) 
0~ 

c~ = h 2 G, dc g~ - A 3 g~,dcg~d~g~ + " "  

=//2 ~ d c g ~  - hg~dcc~, (4.5) 

de - [d o - z - c] -1 (4.6) 

(f~ n') (r ~ C-= ~ C~ (4.7) 

C~ = -Av~ d~ n~' + A 2 g~ dc G de n~ ' . . .  

= -Ag~ dcn~' - hg~ dc C~ (4.8) 

The characteristics of approximations (a) and (b) is that those diagrams 
e.g. the diagram (c) in Fig. 1, in which potential bonds cross over one 
another, are not enumerated. Both of these approximations (a) and (b) 
will be useful in the investigation of cr at low impurity densities ns. From the 
defining equations (4.1)-(4.3), the operators b and B are seen to be rather 
complicated functions ofns and linearly proportional to n, only for extremely 
small ns. Therefore, the conductivity e calculated by using the approxima- 
tion (a) will depend on ns in a complicated manner. The same conclusion 
may be drawn when the approximation (b) is used instead. The advantage 
of the use of these approximations over the straightforward expansion of 
g~ and ( f zn ' )  (~ in (2.7) in powers ofn~ lies in that the former does not suffer 
from the difficulty of the term-by-term divergence met in the latter. While 
there may be other ways of eliminating the divergence, we believe that the 
treatments by means of the approximation (a) or (b), or more generally 
the treatments in which approximations are made by choosing appropriate 
o roper connected diagrams in (3.2)-(3.4), have the appeal of  self-consistency. 
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5. Calculation of Collision Term c~,b 

In the following discussion we shall confine ourselves to the case in which 
there is no magnetic field (B = 0) and the applied electric field is independent 
of time (oJ ~ 0). The momentum representation will be used and z will be 
set equal to ia with 'a' being an infinitesimal positive number. In the 
momentum representation the current density operator j is diagonal and 
thus (2.4) can be written simply as 

�9 e 1 [" 
d3 PPx@.(P) ! (5.1) = -z M (2~r) 3 , 

dp(P) _= lim <Plq,,.lp) (5.2) 
a-~O 

The diagonal element 0?(P) satisfies the following equation 

~ u ( P ] n , ] p ) + ( p  ] / / -  On"~(o ~Y~"-Ouu) [P) = -[g~"(P)]~ O?(P) (5.3) 

which is obtained by taking the diagonal element of (2.6). In this equation 
[g~(P)]0 is defined by 

<P + �89189 f d3 k'(k]g~(P)lk')+k.(P) (5.4) 

~ k , ( P )  = ( P  + ~k'l~lP - � 89  (5 .5)  

(0[ gz(P)[k) - [g~(P)]o 3 (3) (k) (5.6) 

The matrix element (k]c(P)lk'), where c(P) is a functional of operators 
do(P) and v(P) can be simply calculated in the P -  k representation 
(Fujita, 1966) by expanding c(P) in power series and employing the following 
rules: 

f d 3 k"(kl d, ]k") (k"ld2lk') (5.7) (kid1 d2[k' ) 

(k I d(P)Ik') - •k' hk_k,(p) r/-k _ ,q-k' hk_k,(p) ~/k 
(5.8) 

(kl 1 [k' ) = 3 (3) (k  - k ' )  

where ~/+_k is the displacement operator acting on a function ~b of P such that 

~/+-k4(P ) = 4(P -+ �89 ~+_k (5.9) 

The explicit forms of matrix elements (kldo(P)Ik') and (kJv(P)[k') are 
derived, for example, by Fujita [1966, equation (5.7.13)] 

(kl/;0(e)lk') = M - l  P .  k 3 (3) (k  - k ' )  

(k I v(e)lk' ) = ~ ~ (k  - k') (T] k ' - k  - -  ~ - k ' + k )  (5.10) 

The property that g~(P) is diagonal in k arises from the definition of 
connected g-part and the assumption of translation-invariant distribution 
of impurities. This property is proved in the Appendix. 



68 SHIGEJI FUJITA AND CHARLES C. CHEN 

From the defining expression (4.4), the operator c is proportional to the 
impurity density ns in the vicinity of n, = 0. Therefore for very small n ,  
the operator dc may be approximated to by R~~ 

dc -+ R~ ~ --- [/~o - z] -l (5.11) 

and ca: will be approximated to by e~ ~ 

Ca: ~ c(O) ~_~ 22 ~a: R(O) ~ :  _ 23 ~a: Rz(O) va:R z -  (0) ~a: _~_ , . .  

= - 2v,, Rz c~, (5.12) 

The interaction process which will be described by c ~~ = ~a: c~ ~ is clearly 
a one-impurity process. 

For short-range forces the term [cr176 0 ~(P), which is the low-density 
limit approximation to the term on the r.h.s. (right-hand side) of (5.3), can 
be evaluated as follows (Fujita, 1967b). 

Let us consider the following simple situation. At the initial time t = 0 
non-interacting particles are distributed uniformly in space and a fixed 
scattering center with the potential ~ of short range r0 is located at the origin 
r = 0. Because of this potential the momentum distribution function 
n(P, t), whose initial condition is given arbitrarily, will change with time t. 
By elementary considerations, the changing part in n for t ~ ~'a (duration 
of scattering) z ro/(PM -1) will be given by 

n(P,t) - n(P,0) =t f f de dO sin0 P I(P, 0)[n(P', 0) - n (P ,0) ] , t  >~ ~'n(5.13) 

where I(P,O) is the differential cross section for the elastic scattering 
(P -+  P'); 0 and r are respectively the scattering and azimuthal angles. 
Such increments could be made to occur uniformly in space if scattering 
centers were distributed uniformly throughout the space. In this case, the 
term on the r.h.s, of (5.13) should be multiplied by the impurity density ns, 
thus obtaining 

n(P, t) - n(P, 0) = tin(P, 0) (5.14) 

Fn(P,0) = ns f f dCdOsinoP I(P,O)[n(P',O)-n(P,O)] , t>>Td (5.15) 

On the other hand, the formal solution to the Liouville equation 

On 
i N = (,~o + 2v)n  (5.16) 

for the present system is given by 

n(P, t) = [exp {-itQf0 + 2v)}]o n(P, 0) 

(01exp [-it(/~0 + Av)]]k) = 3c3)(k) [exp {-itQfo + 2v)}]0 

(5.17) 

(5.18) 
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The asymptotic behavior of n(P, t) can be simply handled in the Laplace 
space. The Laplace transform of n(t) is defined by 

co 

= i f dtexp(iz t)n(P,  t) (5.19) nz(P) 
0 

By taking the Laplace transform of (5.14) one obtains 

nz(P) + n(P, 0) "T'n(P, 0) (5.20) 
Z -- IZ--2 

This equation implies that - i I 'n  is precisely given by the coefficient of z -2 
in the Laurent expansion of nz. 

The Laplace transform of (5.17) yields 

nz(P) = [~o + ~ V _ z]o n(P, O) = [Rz]o n(P, O) (5.21) 

By expanding R~ in powers of 2, as in (2.7), and noticing that 

(O[/~o(P) lk) = ~(3)(k)M-1P. k = 0 (5.22) 

we obtain 

[Rz]o n(P, O) = { _ !  + ls [_2v + ,)tZ vR(O) v _ /~3 q~R(0)v~.z V..zR(O) V + " �9 "]o} n(P,0) 

= n(P, 0) + [c~(~ 0 n(P, 0) (5.23) 
Z 

By assuming that [c~(~ ) is analytic in the neighborhood of the origin 
z = 0, we thus find 

[C~a~ n(P, O) = -il-'n(P, O) (5.24) 

In (5.3) the second term on the l.h.s. (left-hand side) is proportional to 
at least the first power of the impurity density ns and can be neglected in 
comparison with the first term in the low-density limit. In this limit the 
latter is given by 

0 <Pln,ip > = e p df  (5.25) 
Ou~ M -~ de v 

f ( % )  = [exp{/3(r - ~)} + 1] -I (5.26) 

where ~ is the Fermi energy. 
From (5.3), (5.12), (5.24), and (5.25), one obtains 

e_p 
M-X d% -if'~bx(P) (5.27) 
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From the symmetry consideration, the solution 4~x(P) to the transport 
equation (5.27) is expected to be of the form 

@x(P) = Px~(IPI) (5.28) 

Then, by considering the angular integration with the choice of the x- 
direction as the polar axis, one can show that 

= n~(P/M) f f  dc~ dO sin OI(P, O) [Px' q~(~P) --  ex ~(~P)] r~hx(P) 

= -T• '(P) Px (~ (ev) = -7;1(P) ~h~(P) (5.29) 

(2r 3 ns(P/i) f f d~ dO sin o I ( P ,  o) (1 - cos o) __> 0 (5.30) Tf  l (P)  

From (5.27) and (5.29) one obtains 

~b~(P) = - i , (P )  M P~ d-defp (5.31) 

By substituting this expression for ~b~(P) into (5.1) one finds for the con- 
ductivity (r: 

(e) 2 1 f df 
cr M (2~r) 3 J d3 BPx2 -r(P) dep (5.32) 

This is a familiar result in agreement with the traditional Boltzmann-Bloch 
tleatment of the electrical conductivity for the electron-impurity system. 

It is noted that the calculation of cr in classical mechanics proceeds in 
much the same way. The starting formulas (5.1)-(5.3) retain the same form 
except that (PI~z]P) and (PIn'[P) are now to be redefined as classical 
momentum distribution functions, and the Liouville operators in P -  k 
representation are replaced with the corresponding cl~.ssical Liouville 
operators in wave-vector representation: 

/~ ~ ~o + Av (5.33) 

(kJ,~0(P) I k') = M - I  P . k  8r  - k ' )  

0 (5.34) 
(k I v(P)lk' ) = -v(k - k') (k - k ' ) . ~  

The relations (5.15) and (5.24), where the differential cross section 
I(P, 0) must now be calculated classical mechanically, can be established 
with the identical argument. The use of these relations and the consideration 
of the classical statistics yields for (7 the expression identical in form with 
(5.32), wheref  (P) is now replaced with the Boltzmann distribution function 
f ( P )  = exp [-/3(ep - 0]- 

6. Non-Power Impurity-Density Expansion. Case of Weak Coupling 
In this section we shall investigate the behavior of the conductivity (r in 

the neighborhood of ns = 0 for the weak coupling case. In particular we 
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examine the possibility of the existence of logarithmic terms in its impurity 
density expansion. 

As we discussed in Section 4, the collision operator gz will be then 
approximated to by b. In the P -  k representation the integral equation 
(4.1) satisfied by b is written as 

(OIblk') = A 2 ~ f f  d 3 k,  d 3 k2(O I ~ lk , ) (k ,  ]d~lkz ) (k2[ ~ lk ' )  

= (27r)3 n~A2 f d 3 ktS(k)12 (.qk _ ~-k){M-, P . k  

- -  [ b ( P ) ]  k - -  ia)-' (~1 -k - ~ k )  ~<3)(k,  ) 

=- [b(P)]o 3(3)(k') (6.1) 

(klblk') -= [b(P)]k ~(3)(k - k') (6.2) 

where the diagonal property of the collision operator is used. See (A.1) in 
Appendix. 

Applying the operator [b(P)]0 on q~(P) one obtains 

n~ A 2 f d 3 k l~(k)[ 2 {(r -- eP -- [b(P + �89 - -  [b(P)]o ~b(P) (2~) 3 ia) -1 

- -  (r  - -  CP -~- [ b ( P  + � 8 9  k + ia) -1} x 

• [~b(P) - Od(P + k)] (6.3) 

For very small values of n,, b is linearly proportional to n~. If  the b-terms 
in the energy denominators are neglected, the collision term [b(P)]o qJx(P) 
is given by 

[b(P)]o q~x(P) -~ [b(~ ~x(P) 

= (2~r) 3 n,A 2 f d 3 kl~(k)l z (27ri) a(gp+ k - -  g p )  • 

• [~b~(P) - ~bx(P + k)] (6.4) 

According to the analysis in Section 5, the last expression can be written as 

[b(~ ~bx(P) = ir71(P)~bx(P) -- ico(r ~ ~bx(P ) (6.5) 

where the collision frequency oJ(f ~ is given in the form of (5.30) with the 
cross-section I(P, 0) being evaluated to the second order in A. 

For small values of k, the self-consistent field correction [b(P + �89177 k 
to the energy denominator will have the behavior of the form 

[b(P + �89177 : [b(P)]0 + Ab+ (6.6) 

where Ab + are known to vanish as k ---> 0 [see (6.13) and (6.14)]. 
For very small n~, (6.6) may be approximated by 

[b(P + �89 k ~ [b(~ 0 + Ab(+ ~ (6.7) 
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where both terms on the r.g.s, are linear in ns. Substituting (6.7) into (6.3), 
one obtains 

[b(a)]o ~hx(P) = (2~) 3 ns A 2 f d 3 k l~(k)[ 2 {(zp+k -- Sp -- [b(~ o - rib(~ -1 

- (si,+k -- sp + [b(~ o + Ab(_~ - l }  • 

x [~x(P) - ~ ( P  + k)] (6.8) 

By using this form of  collision term we may calculate the conductivity a 
through (5.1) and (5.3). The calculation equivalent to this was explicitly 
carried out  in the previous paper  (Fujita, 1967a). It is found there that 
within this approximat ion no logarithmic terms arise in the impurity 
density expansion of  or. 

In order  to further investigate the possibility of  the existence of  logarith- 
mic terms, we shall adopt  (6.6) in place of  its low-density limit approxima- 
t ion (6.7). Substi tution of  (6.6) into (6.3) yields 

[b(P)]o ~h~(P) = (2~-) 3 n,,~2 f d 3 k l~(k)[2 {(~F+~ - sF - [b(P)]o - Ab+)- '  

- (~F+k--  ~P + [b(P)]o + A b - ) - ~ }  • 

• [~x(P) - ~ ( P  + k)] (6.9) 

For  small ns, the term on the l.h.s, may  be approximated to by 

[b(P)]o ~ ( P )  = iwf ~x(P) (6.10) 

oJ/--> oJ(r176 -- ~'~ 1 as ns ---> 0 (6.11) 

Since both o)f and ~bx(P) are real numbers  (6.10) implies that [b(P)]0~b~(P) 
should be a pure imaginary number.  This can be seen as follows: 
vn'= v n ' - n ' v  (n' a density operator).  Taking Hermit ian adjoints, one 
obtains ( v n ' ) t = - v n  '. Similarly , ( / ;0n ' ) r  '. Therefore {[v(/~o,  
ia)-l v](C)n }t = _[v(h, ~ _ ia)-i v](C)n. More  generally, (gian)r = -g~an. 
This means that  the diagonal elements ofg~,n' are pure imaginary numbers. 

In the same approximat ion the operators [b(P)]0 and Ab +- in the energy 
denominator  will be replaced by numbers kof and As + respectively, where 
Az • are propor t ional  to n~ at least linearly and tend to zero as k - +  0. 
The use of  this approximat ion in (6.9) yields the following integral equat ion 
for  ~or 

(270 3 n~ A 2 f d3 k[~(k) l 2 {(sp+k -- s~, -- A ~+ - ioJf)-' ico f 

- -  (a'p+ k - -  ~p -}- / ' lS_ -[- it_of) -1} (6.12) 

According to the previous analysis (Fujita, 1967a), the energy corrections 
A s -+ are given, to the first order  in n,, by 

As+ = Ase+ k -- As r = --A~ (6.13) 
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~ e l ,  = (2zr) 3 ns )~2 f d 3 k l t T ( k ) ] 2 ~  1 (6 .14 )  
~ P + k -  ~ P  

where the symbol ~ means that Cauchy's principal value should be taken 
upon the integration across the pole. Using this approximation one obtains 
from (6.12) 

f wf (6.15) wf = 2(2zr) 3 n,h 2 d3 kl (k)12 + o,/  

~ , '  = ~p + Aep  (6.16) 

In this equation ~ f  and sp' may be referred to respectively as the renormal- 
ized collision frequency and the perturbed single-particle energy correspond- 
ing to the momentum P of the electron. 

Let us now examine the low-density behavior of oJf. As k --> 0, 
t t E ~ Sp+ k - ~l' --> 0 (6.17) 

and wf -+ w~ ~ Since the collision frequency wf is proportional to n~ for 
small ns, we may introduce x such that 

wf =- n~ x(n,) (6.18) 

When the integration variable k is changed to E (and angular variables), 
the important values of the integrand will be roughly between -oJ a and oJ a 
because of the short-range nature of the potential, where wa is the inverse 
of  the average duration of collision ~'n. In view of these considerations we 
may roughly estimate the integral in (6.15) by 

ogd 
# n s x  

rtsx = to I dE 
E 2 + ( n s x )  2 

--tO d 

= 2col tan_ l oJa (6.19) 
/'l s X 

where the quantity o l  of the dimension of a frequency is introduced by the 
dimensional consideration. One can determine oJ I by considering the 
low-density limit of (6.19): 

ns-~0 

From the last two equations one obtains 

t r=x(n,)l 
a n [ 2 x o 0  ]: .~x(n~) (6:21) 

This transcendental equation for x(n,) determines the behavior of 
x(nO for small n~ and for 0 < x _-< x0. Although this behavior is rather 
complicated, it does allow an approximate solution of the form 

2 ns XO 2 
X = XO . . . .  + "'" (6.22) 

7T oJ d 
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for very small n,, which is verified by s!mple substitution. Therefore, we see 
f rom (6.22) that the correction of the self-consistent field to the pure one- 
impurity collision process should give rise to a contribution whose order of 
magnitude is smaller by the ratio of  the duration of collision ~rd to the mean 
free time ~s than the Boltzmann-Bloeh collision frequency co~ ~ Also, we 
note that in the present estimation of (6.15) no correction in the form of 
logarithmic terms in ns are expected. 

The actual behavior of  co s = nsx(n~) near n, = 0 certainly depends on the 
impurity potential. However, the qualitative ns-dependence is unlikely to 
depend very much on an approximation such as (6.19). In fact, it is easy to 
show that an equation of the same form as (6.21) is obtained directly from 
(6.15) by assuming that 

Iv(k)[ 2 : constant for k < ko - 1/R 

: 0 for k > k0 (6.23) 

coa -- Pko/M (6.24) 

and by retaining terms of important orders. Also, see the calculation in the 
next section. 

7. Non-Power Impurity Density Expansion. Case of  Strong Coupling 

In the case of  strong coupling, the (even simplest) low-density limit of  the 
collision operator, c~ ~ with z = -o~ + ia, is given by the infinite power series 
of  A or equivalently by the solution of the algebraic equation (5.12). There- 
fore, it is in general difficult to obtain the collision term in a closed form 
except for special cases. One of the exceptional cases is that which we 
calculated in Section 5. In fact, we saw there that the low-density limit of 
the collision term for z = ia can be expressed in terms of the differential 
cross-section I(P, 0). This result can be alternatively expressed in terms of 
the transition matrix, defined by 

T12(eo) = / ~ 1 2  -- '~ f d3p3 ~ 1 3 [ ~ 3  - -  ~ ;0  - -  ia] -1 T32(~o) 

T12 - (p, [TIP2), ~2 = (Pl [~]P2) (7.1) 

as 

[c:~ ~bx(P , 05 - i2(2~r) 3 ns f d 3 kl Te. p+k(gp)l 2 • 

•  [~P+k -- e~ -- ia] -1 [1 -- COS (P ,P  + k)] ~bx 

- -i~-/(P) -1 ~bx(P) = ico~ ~ ~bx(P) (7.2) 

where the symbol Im means the imaginary part. It  is stressed that this 
expression is identical in form with the weak-coupling limit (6.4) except 
for the fact that the elements of T-matrix now enters in place of  those of  
v-matrix, 
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The evaluation of the T-matrix elements or equivalently that of the 
differential cross-section I(P, O) generally require large amount of labor in 
either quantum or classical mechanics. Therefore, the quantitative treatment 
of the strong coupling case is difficult. 

In order to more closely investigate the low-density behavior of the 
collision term, we must solve the equations (4.4)-(4.6) for e(P) with z = ia. 
This makes the quantitative treatment even more difficult. In the following, 
therefore, we shall discuss the case qualitatively by using the analogy 
between the weak and strong couplings. 

Let us postulate, as we did for b(P) in (6.6), that 

[c(P)10 4'x(v) = i~os Cx(P) (7.3) 

with the number co e approaching o~} ~ in the low-density limit: 

o) e ~ ~.o) as ns --> 0 (7.4) 

In view of the said analogy the equation to be solved for col will be similar 
to (6.12) and will be written as 

v ! �9 / - I  ~of(ep') = (2~- )  3 n, f d 3 k l T~, p + k ( ~ p  t)  [2 X Im [ ~ P + k  - -  ~P - -  lr ) ]  ( 7 . 5 )  

Z12(~t) ~" ~UI2  - -  ~ f dSp3 vl3[e3 ' -- ~' -- io~:(e')] T32(~' ) (7.6) 

In these equations s'  = r  is the perturbed energy and is given to the first 
order in n~ by 

~p' = ep + (270 3 ns f d 3 klTp, p+k(er)[ 2 ~ 1 (7.7) 
~ P + k  - -  ~P 

When the potential v has a short range, the general argument would 
ensure that the square of the T'-matrix element effectively cut off the 
E-integral for I Et - I~+k -- ~P'l > ~ Because of this property, we can 
study the qualitative behavior of o)f in the neighborhood of ns = 0 in the 
same way as in the case of weak coupling, and can draw the same conclusion 
with respect to the improbability of obtaining the correction involving Inns. 

The foregoing argument should also apply for the classical mechanical 
system although the square of T-matrix element should be replaced with a 
kind of cross section, which has the property of cutting off the contribution 
due to excessively large energy transfer. 

In the article published by Murase (1966), the same problem was 
investigated starting from the expression equivalent to (5.1) and (5.3), 
and using the same connected diagram expansion. Analyzing the most 
divergent parts in terms of the diagrams, he found that the term-by-term 
divergence can be eliminated by summing the infinite series of R-type 
diagrams, which is a subclass of those included in the defining equations 
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(4.4)-(4.6) for c in our case. He also found [Murase, 1966, equation (4.23)] 
that the resummation leads to the modification in the propagator 

1 I 
§ (7.8) M - 1 P . k  - ia M- I  P . k  - in~oj~o)(p) 

(Change of notations: v -+ M -1 P, 7(P) -+ w~~ 
This is in qualitative agreement with our treatment if the higher-order 

effects as well as the change in the single-particle energy were neglected in 
our equation (7.5). 

In estimating the effect of this modification on the conductivity cr for a 
two-dimensional system he proceeded to use the following equations 
[Murase, 1966, equation (4.24)], 

k 1 1 [c(O)(P)]k ] - n~Im f d 2 k S ~ - I m  f d2 [ M - 1 P ~ k _ i a  M - I P . k - i a +  

Mc.of(O)/p 1 
,., o~ ~ f dkk  n 2i03(~ M - 2  p 2  k2 + s t y J 

0 

M 2 
,,~ to!~ ~ - (-Inns) (7.9) 

We believe that the step of approximation in going from the second to third 
member cannot be justified. If  this step were made with due care, no 
logarithmic terms should have appeared in his treatment. 

This can be seen by explicitly carrying out the integration indicated. Let 
us first note that the integrand in (7.9) should be multiplied by the factor 
I Tp, p+k( p)l 2 as in (7.5), in order to really estimate the correction to the 
density expansion. Then, the first term in the second member of (7.9) yields 

1 
(2~r) 2 n~ Im f d 2 k M_l  p . k _  ialTv, i,+k(Sp)[2 - o~~ (7.10) 

where the term on the r.h.s, is the collision frequency in the low-impurity- 
density limit in two-dimensional problem. As we have analyzed before and 
in agreement with Murase's arguments, the operator [c~~ k appearing in 
the second member of (7.9) can be replaced with the numerical factor 
-ioJ} ~ in our qualitative estimate. Thus, we must deal with the integral 

1 
12 - (2~r)2 n~ Im f d2 klTe.p+k]ZM _, P . k  - ia - ioJ~ ~ 

; 7 2 ~o~ dOlT P V+k[ 2 1 (7.11) = (2~) n~ ~Oy dkk (M-  l Pk cos O) 2 + ~w s / , [ ,(0)~2 
0 0 

where we have introduced the plane polar coordinate (k, 0) with the polar 
axis pointing along the direction of the vector P. If  one neglects the angular 
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dependence of [Tp, p+k[ z, the integration with respect to the angle 0 can 
be carried out simply, yielding 

f 27r I2=(27r)2n~ dkk[Tr, r+k[e /[M_Ze2k2 +(~oT))2] (7.12) 
o 

Note that this form is very different to the third member of (7.9). The 
integral in (7.12) can be estimated by noticing the fact that the factor 
IT v, P+klZ falls off rapidly for the values of k greater than the inverse of the 
range R of force. 

Thus, by assuming that 

1 I2=K f o r k < 0  

1 
= 0 for k > k0 = R (7.13) 

we obtain from (7.12) that 

12 (2rr) 3 2 -2 -2 2 2 (0) 2 = nsKM P {M'[M P k0 +(~os)  ] -oJ~  ~ (7.14) 

With the assumption (7.13), the collision frequency o~ ~ can be calculated 
as 

~o~ ~ = (2~r) 3 nsKMP -I ko (7.15) 

Using this relation, we can rewrite (7.14) in the form 

Iz = oJ~~ + (eo~~ 21 - oJ~~ (7.16) 

with wa =-M-XPko denoting the inverse of collision duration. The last 
expression means that the correction is of the order of oJ~~ in qualitative 
agreement with the conclusion stated in the last part of Section 6. 

The present estimation has a further difference from Murase's work in 
that the cut-off ko -- 1/R in the k-integral is provided by that property of 
IT[ z arising from the finite-range nature of the interaction potential in our 
calculation whereas the cut-off M~o~~ appearing in (7.9) is related to the 
collision frequency oJ~ ~ and thus distinct from k0. Although this difference 
does not affect the (non) existence of a logarithmic term, it is emphasized 
that our cut-off k0 is built in within the formulation whereas the cut-off 
MoJ~~ was introduced extraneously by using the collision time arguments 
(Kawasaki & Oppenheim, 1965) or phase volume arguments (Weinstock, 
1965; Kritz & Sandri, 1966; Senger, 1966; Goldman & Frieman, 1967). 

The extension of the calculation to the three-dimensional case can be 
carried out in a similar manner. In place of Iz in (7.11) one deals with 

/3 = (2rr)3 ns f d3 klTp, p+kl2Im [M - 1 P . k  - ia ir -1 

= (2rr)4nseo) ~ dlck 2 f d(cos0)ITp, p+k] 2 [(M-1PkcosO) 2 + (o4o))21-1 
o - l  ( 7 . 1 7 )  
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The angular integration yields 

I 3 = (2~-)4n~ f dkk2lTi, P+kl2(2MP-lk-a) tan- l (M-1Pk/ to~ ~ (7.18) 
o 

By using the simplifying assumption of the same form as (7.13), one obtains 

04o, 
13 "= (2~)4nsKMP-1 ](02 tan-l(~~176176 eoa 

+ - -  
\ coa/ 

~ o }  ~ 1 - - - +  - -  + ' "  (7.19) 
rt co d \COd~ 

,,~0) = (2~r)3 n~ f d 3 k]Tp,p+kl 2 Im [M -1P .k - ia] -~ 

= (2~') 4 ns K M P  -1 ko2(rr/2) (7.20) 

The expression (7.19) is in complete agreement with the conclusion obtained 
in Section 6. 

8. Concluding Remarks 

The term-by-term divergence in the straightforward impurity density 
(n~) expansion of the conductivity ~ can be completely eliminated by 
introducing the expansion of ~ in terms of proper connected diagrams. The 
divergence is thought to arise from the fact that any interaction process 
between the electron and a set of impurities should take place in the average 
field of other impurities, and all the impurities should be treated self- 
consistently in the statistical mechanical theory of transport coefficients. 
This treatment automatically induces the perturbed single-particle energy 
and the collision broadening effects. Unlike the connected-diagram expan- 
sion the new expansion does not yield the straightforward expansion of 
cr(n~) in powers ofn~. The qualitative investigation of the analytical behavior 
of ~r(n~) near the origin does not support the existence of logarithmic terms, 
much publicized in the recent literature (Fixman, 1963; Kawasaki & 
Oppenheim, 1965; Van Leeuwen & Weijland, 1965; Kritz & Sandri, 1966; 
Langer & Neal, 1966; Murase, 1966; Sengers, 1966; Dorfman & Cohen, 
1967; Goldman & Frieman, 1967). The analytical behavior of ~(n~) is in 
general very complicated but does allow an asymptotic expansion in powers 
of the ratio of the collision frequency ~o~ ~ to the inverse of collision duration 

r162 t~ s ~ a oc n ,  for the simple model discussed in the present paper. 
The method of the expansion in terms of proper connected diagrams can 

be generalized for a more complicated many-body systems such as an 
imperfect gas. By means of this generalization, we can remove the term-by- 
term divergence of the density expansion of a transport coefficient and 
discuss the analytical behavior of the density expansion. This topic will be 
reported in a separate paper (Fujita, 1967c). 
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Appendix 
In this appendix we wish to prove the proper ty  that  

(k[ gz]k') = g(a)(k - k') [gz]k (A.1) 

on the condit ion that  the impurity distribution is invariant under translation. 
The k-particle impurity distribution function n~(R1,R2 . . . . .  R~) is called 
translation-invariant if 

n~(R1 + R,  RE + R , . . . ,  Rk + R) = n~(Rl, RE . . . .  , Rk) (A.2) 

for an arbitrary constant vector R. 
Let  us first consider the simple diagram (a) in Fig. 1. In the P -  k 

representation its contr ibution is written as 

(k] g~")Jk ') - A 2 ~ (kJg=[/~o - z] -1 ~=lk') 

= A2 ~ f d 3 k~(kl~lk~ ) [M-~ e .k l  - z]  - I  (kl  ]~=lk') 

= A 2 ~ f d3kl ~(k - k l )exp  [ - i (k  -- kl) .R~] • 

• (~k~-k _ ~-k~+k) [ M - 1 P . k l  - z]  -1 • 

• ~(kl - k') exp [ - i (k l  - k') .  R~] (r/k'-k~ - ~-k'+k,) (A.3) 
where 

~(k - k') - (27r) -3 f d 3 rg(r) exp [ - i ( k  k')  (A.4) 

By the assumption of translation-invariant distribution of  impurities, 
the summation with respect to ~ can be replaced by the integration: 

ns f d 3 R e (A.5)  Z 

and the third member  of  (A.3) yields the delta-function 

n~ f d 3 R~ exp [ - i (k  - kl) .  R~ - i(kl - k ') .  R~] = (27r) 3 n~ ~(3)(k - k') (A.6) 

Thus one sees that  the matrix (k[ g(J)Ik') is diagonal in k. 
Such a diagonal proper ty  is easily verified for general one-impurity 

diagrams such as the diagram (b) in Fig. 3 by noticing 

A'Z (klg~ R~ ~ ~ . . .  ~lk') 

f/d3kl...d3kHexp{-i[(k-kl)+(kl-k2)+... 
+ (kz_~ - k')]. R~} 

n s f d 3 Rexp  [ - i (k  - k ' ) .R~] cC 

= (27r) 3 n~ g(3)(k - k') (A.7) 
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The equation (A.7) gives rise to the property that the vector sum of those 
momenta absorbed by the impurity center is equal to zero. 

We now consider the diagram (d) in Fig. 1 which contains a correlation 
bond between the two impurity centers. Its contribution is given by 

g~d) - -  �89 =,~ ~7= [Zo _ Z]-I ~# x2(Ru, R~) (A.8) 

From the assumption of translation-invariant distribution of impurities, 
the two-impurity correlation function x2(R~,R3) depends only on the 
difference R= - R~: 

x2(R~, Rg) = x(R~ - R/3) (A.9) 

By writing the Fourier transform of x(R~ - Rg) as 

= f d 3 R exp (-iq. R) x(R) Xq 

x(R) = ~ d 3 q exp (iq. R) Xq (A. 10) 

and examining the exponential factors containing the impurity coordinates 
in the k -  k' element of g~d), one sees that the element contains in its 
integrand: 

?Is 2 f f  d3 Rood 3 R~ exp [ - i ( k - k l ) . R ~ ]  • 

x exp [-i(kl - k'). R~] exp [iq. (R~ - R/3)] 

: (217") 6 ns 2 ~(3)(k - kl + q) c~r - k' + q) 

: (2w') 6 ns 2 3(3)(k - kl + q) 3<3)(k - k') (A.11) 

The presence of the factor ~(3)(k-k')  here implies that (klg~a)]k ') is 
diagonal and that the net momentum absorbed by the pair of correlated 
impurities is equal to zero. In a similar manner one can show that the net 
momentum absorbed by the set of any number of correlated impurity 
centers vanishes. 

A general diagram for gz may contain arbitrary numbers of correlated 
and/or uncorrelated impurity centers. The net momentum absorbed by all 
the impurity centers is clearly the sum of those momenta absorbed by each 
set of correlated impurity centers and each uncorrelated impurity center. 
Since the latter momenta are separately equal to zero, so is the net momen- 
tum. This establishes the desired property (A.1). 
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